The Electrochemical Evaluation of the Metal-Carbon Bond Energies (−ΔGBF) of Alkylated Iron and Cobalt Porphyrins [(por)M-R]

Author(s):  
AIMIN QIU ◽  
DONALD T. SAWYER

The electron-transfer oxidation-reduction chemistry for the alkyl derivatives of iron and cobalt porphyrins [( por ) M III − R ] has been characterized on the basis of cyclic voltammetric and controlled-potential-electrolysis measurements. The electrogenerated anions of iron and cobalt porphyrins [( por ) M − and ( por −·) M −] are strong nucleophiles that react with alkyl halides ( RX ) via a nucleophilic displacement process to form metal-carbon bonds [( por ) M - R and ( por −·) M - R ]. The difference in the reduction potentials for RX and ( por ) M II provides an approximate measure of the ( por ) M - R bond-formation free energy (−ΔG BF ). The −ΔG BF values for iron porphyrins (14–35 kcal mol−1) and for cobalt porphyrins (20-38 kcal mol−1) depend on the electron density of the porphyrin ring ( OEP > TPP > Cl 8 TPP > F 20TPP) and the structure of the alkyl group (1° > 2° > 3°). Thus, the apparent metal-carbon bond energy (−ΔG BF ) for ( OEP ) Fe III- Bu -n is 28 ± 2 kcal mol−1, and for [( MeO )4 TPP ] Co III- Bu -n is 36 ± 2 kcal mol −1. The ( por −·) M − dianions react with carbon dioxide in an electrocatalysed reduction cycle to give CO and CO 32− via the apparent transient formation of a metal-carbon bond [( por −·) M - C ( O ) O −; −Δ G BF ≥ 12 kcal mol −1 for iron porphyrins].

2011 ◽  
Vol 15 (01) ◽  
pp. 66-74 ◽  
Author(s):  
Weihua Zhu ◽  
Yuanyuan Fang ◽  
Wei Shen ◽  
Guifen Lu ◽  
Ying Zhang ◽  
...  

Two cobalt porphyrins, (OEP) CoII and (TPP) CoII , where OEP and TPP are the dianions of octaethylporphyrin and tetraphenylporphyrin, respectively, were examined as electrocatalysts for the reductive dechlorination of DDT (1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane) in N,N′-dimethylformamide (DMF) containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). No reaction is observed between DDT and the porphyrin in its Co(II) oxidation state but this is not the case for the reduced Co(I) forms of the porphyrins which electrocatalyze the dechlorination of DDT, giving initially DDD (1,1-bis(4-chlorophenyl)-2,2-dichloroethane), DDE (1,1-bis(4-chlorophenyl)-2, 2-dichloroethylene) and DDMU (1,1-bis(4-chlorophenyl)-2-chloroethylene) as determined by GC-MS analysis of the reaction products. A further dechlorination product, DDOH (2,2-bis(4-chlorophenyl)ethanol), is also formed on longer timescales when using (TPP)Co as the electroreduction catalyst. The effect of porphyrin structure and reaction time on the dechlorination products was examined by GC-MS, cyclic voltammetry, controlled potential electrolysis and UV-visible spectroelectrochemistry and a mechanism for the reductive dechlorination is proposed.


1981 ◽  
Vol 222 (2) ◽  
pp. 311-321 ◽  
Author(s):  
M.D. Le Hoang ◽  
Y. Robin ◽  
J. Devynck ◽  
C. Bied-Charreton ◽  
A. Gaudemer

2014 ◽  
Vol 18 (06) ◽  
pp. 519-527 ◽  
Author(s):  
Weihua Zhu ◽  
Cui Ni ◽  
Lili Liang ◽  
Junwen Li ◽  
Minzhi Li ◽  
...  

Two iron porphyrins, ( TPP ) FeCl and ( OEP ) FeCl , where TPP and OEP are the dianions of tetraphenylporphyrin and octaethylporphyrin, respectively, were utilized as catalysts for the electroreductive dechlorination of α-hexachlorocyclohexane (α- HCH ) which was monitored by electrochemistry, in situ UV-visible spectroelectrochemistry and controlled potential electrolysis in N , N ′-dimethylformamide. GC-MS analysis of the α- HCH degradation products revealed the stepwise formation of pentachlorocyclohexene and tetrachlorocyclohexadiene as intermediates, prior to generation of the final dechlorination products which consisted of an isomeric mixture of trichlorobenzenes. Based on identification of the intermediates and final products in the reaction, an overall dechlorination mechanism of α-hexachlorocyclohexane is proposed.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


1965 ◽  
Vol 240 (8) ◽  
pp. 3317-3324
Author(s):  
Maurizio Brunori ◽  
Jeffries Wyman ◽  
Eraldo Antonini ◽  
Alessandro Rossi-Fanelli

1937 ◽  
Vol 117 (1) ◽  
pp. 281-308
Author(s):  
Henry Borsook ◽  
Emory L. Ellis ◽  
Hugh M. Huffman

1939 ◽  
Vol 131 (2) ◽  
pp. 649-662 ◽  
Author(s):  
John Fuller Taylor ◽  
A. Baird Hastings

Sign in / Sign up

Export Citation Format

Share Document